Modeling the Micellization Behavior of Fluorosurfactants using Molecular-Thermodynamic Theory
نویسنده
چکیده
Fluorinated surfactants are an important class of surfactants because they possess properties that are far superior than those of their hydrocarbon analogs. As a result, they find use in a wide variety of applications including in paints, polishes, fire-fighting foams, and emulsion polymerization. However, concerns regarding the non-biodegradability and toxicity of fluorinated surfactants have prompted the search for new benign alternative surfactant formulations that possess properties that are comparable to those of traditional fluorinated surfactants. With this need in mind, this thesis focuses on gaining a molecular-level understanding of the micellization behavior of traditional fluorinated surfactants, and then using the acquired knowledge to design novel surfactant formulations that can reduce the use of fluorinated surfactants. Molecular-thermodynamic (MT) models were developed to calculate the various contributions to the free energy of micellization for discoidal and biaxial ellipsoidal micelle, two important micelle shapes in the context of fluorocarbon-based surfactants. These models explicitly incorporate the effect of the position-dependent curvature associated with discs and biaxial ellipsoids. Comparison between the models developed here with those that do not explicitly account for the varying curvature shows that accounting for the position-dependent curvature is extremely important in modeling these two micelle shapes. The new MT model for the free energy of micellization is also used to demonstrate the feasibility of realizing biaxial ellipsoidal micelles, a result refuted in the past in many theoretical studies on the basis of average geometrical properties of the micelle. A new computer-simulation-molecular-thermodynamic (CSMT) framework was developed to predict the micellization behavior of mixtures of fluorocarbon-based surfactants. To facilitate the practical implementation of the mixture CSMT framework, which involves the computationally intensive task of simulating several mixed micelles, an approximation to the mixture CSMT model was developed. In this approximation, relevant properties for a mixed micelle are estimated using a micelle-composition based weighted average of the analogous properties obtained from simulations of the single-component surfactant micelles for each of the surfactants comprising the mixture. Therefore, in this approximation, the need for simulating mixed micelles is eliminated. The approximation was found to compare well
منابع مشابه
Complementary Use of Computer Simulations and
Surfactants, or surface active agents, are used in many pharmaceutical, industrial, and environmental applications. Selection of the appropriate surfactant or mixture of surfactants for any given application is driven by the need to control bulk solution micellization and solubilization characteristics. The goal of this thesis has been to develop computer simulations and molecular-thermodynamic...
متن کاملA Computer Simulation and Molecular-Thermodynamic Framework to Model the Micellization of Ionic Branched Surfactants in Aqueous Solution
Surfactants, or surface active agents, are chemicals exhibiting amphiphilic behavior toward a solvent. This amphiphilic character leads to increased activity at interfaces and to self-assembly into micellar aggregates beyond a threshold surfactant concentration, referred to as the critical micelle concentration (CMC), in bulk solutions. As a result of these unique attributes, surfactants are us...
متن کاملMolecular thermodynamic modeling of specific ion effects on micellization of ionic surfactants.
Specific ion effects are ubiquitous in biological and colloidal systems. The addition of electrolytes to ionic surfactant solutions has pronounced effects on micellar properties, such as critical micelle concentration (cmc), micellar size, and shape. Ions play an important role in colloid stability and aggregation behavior of ionic surfactant solutions. Despite extensive experimental data, ther...
متن کاملQuantifying the hydrophobic effect. 1. A computer simulation-molecular-thermodynamic model for the self-assembly of hydrophobic and amphiphilic solutes in aqueous solution.
Surfactant micellization and micellar solubilization in aqueous solution can be modeled using a molecular-thermodynamic (MT) theoretical approach; however, the implementation of MT theory requires an accurate identification of the portions of solutes (surfactants and solubilizates) that are hydrated and unhydrated in the micellar state. For simple solutes, such identification is comparatively s...
متن کاملInteraction and micellar behavior of aqueous mixtures of surface active ionic liquid and cationic surfactant: experimental and theoretical studies
The interaction between an ionic liquid (1-dodecyl-3-methylimidazolium bromide or IL) and cationic surfactant (dodecyltrimethylammonium bromide (DTAB)) in aqueous solution has been investigated at various mole fractions and temperature 30 ˚C using experimental and theoretical methods. The critical micelle concentration (CMC) of pure components and their binary mixtures, mixed micellar compositi...
متن کامل